Numerical Simulation of Highly Efficient Cs2TiI6 based Pb Free Perovskites Solar Cell with the Help of Optimized ETL and HTL Using SCAPS-1D Software

Md Abdul Halim, Md. Shafiqul Islam, Md. Momin Hossain, Md. Yakub Ali Khan

Abstract


In order to provide the best photovoltaic application, this paper examines the physical, optical, and electrical aspects of Cesium Titanium (IV) based single halide Perovskite absorption materials. Perovskite solar cell for scavenging renewable energy, has grown more and more necessary in the context of the diversification of the use of natural resources. Due to its efficient band gap of 1.8 eV, Cs2TiI6 has become a desirable contender for today's thin-film solar cell. This article shows the spectrum responses of a planar Au/FTO/C60/Cs2TiI6/CH3NH3SnI3/Al based structure where CH3NH3SnI3 is used as a Hole transport layer (HTL) and C60 and FTO are utilized as Electron transport layers (ETL) under 300K temperature conditions. This research demonstrates that employing FTO and C60 as Electron transport layer charge extraction can be achieved. FTO provides High transmission, strong conductivity, and good adherence for the deposited layers. When used in a coevaporated perovskite solar cell, a C60 layer with an ideal thickness less than 15 nm improves charge extraction. This article tried to avoid cadmium for solar cell generation due to its toxicity on environment. The simulation included detailed configuration optimization for the thickness of the absorber layer, HTL, ETL, defect density, Wavelength, temperature, and series resistance.  In this work the Power Conversion Efficiency (η), Fill Factor (FF), Open-circuit Voltage (Voc), J-V Curve, Quantum Efficiency and Short-circuit current (Jsc) have been measured by varying thickness of absorber layer in the range of 1µm to 6 µm. The optimized perovskite solar cell shows a power conversion efficiency of 21.8429% when the absorber layer thickness is 4µm and electron transport layer thickness is 0.6µm.


Keywords


Perovskite Solar Cell _1; Optimization_2; Solar Cell Capacitance_3; lead-free perovskite_4; Cs2TiI6_5

Full Text:

PDF

References


Halim, M. A., Hossain, M. M., & Nahar, M. J. (2022). Development of a Nonlinear Harvesting Mechanism from Wide Band Vibrations. International Journal of Robotics and Control Systems, 2(3), 467-476.

Saha, T., Islam, M. S., Halim, M. A., Prianka, Y. M., & Ahmed, M. M. Simulation and Investigation of Cd-free SnS-based Solar Cells with a ZnSe as a Buffer Layer using SCAPS-1D.

Y. S. Lee, et al., “Atomic layer deposited gallium oxide buffer layer enables 1.2 v open-circuit voltage,” in cuprous oxide solar cells Advanced Materials, vol. 26, pp. 4704–4710, 2019, https://doi.org/10.31763/ijrcs.v2i3.524.

D. M. Berg, et al., “Thin film solar cells based on the ternary compound Cu2SnS3,” Thin Solid Films, vol. 520, pp. 6291–6294, 2012, https://doi.org/10.1016/j.tsf.2012.05.085.

X. Jin, L. Zhang, G. Jiang, W. Liu, and C. Zhu, ‘High open-circuit voltage of ternary Cu2GeS3 thin film solar cells from combustion synthesized Cu-Ge alloy,” Solar Energy Materials and Solar Cells, vol. 160, pp. 319–327, 2017, https://doi.org/10.1016/j.solmat.2016.11.001.

D-J. Xue, et al., “GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation,” Journal of the American Chemical Society, vol. 139, pp. 958–965, 2017, https://doi.org/10.1021/jacs.6b11705.

Halim, M. A., Biswas, S. K., Islam, M. S., & Ahmed, M. M. (2022). Numerical Simulation of Non-toxic ZnSe Buffer Layer to Enhance Sb2S3 Solar Cell Efficiency Using SCAPS-1D Software. International Journal of Robotics and Control Systems, 2(4), 709-720.

Maurya, K. K., & Singh, V. N. (2021). Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer. Sustainability, 13(21), 12320.

Kojima A., Teshima K., Shirai Y., Miyasaka T. 2009 J. Am. Chem. Soc. 131 6050-6051.

Yang W. S., Noh J. H., Jeon N. J., Kim Y. C., Ryu S., Seo J. 2015 Sci. 348 1234-1237.

Yin W. J., Yang J. H., Kang J., Yan Y., Wei S. H. 2015 J. Mat. Chem. A 3 8926-8942.

Burnat, D., Sezemsky, P., Lechowicz, K., Koba, M., Janczuk-Richter, M., Janik, M., ... & Śmietana, M. (2022). Functional fluorine-doped tin oxide coating for opto-electrochemical label-free biosensors. Sensors and Actuators B: Chemical, 132145.

Moiz, S. A., Albadwani, S. A., & Alshaikh, M. S. (2022). Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers. Nanomaterials, 12(19), 3435.

Chakraborty, K., & Paul, S. (2021, February). Comparison of spectral responses of Cs2TiI6-XBrX based Perovskite device with CdS and TiO2 Electron transport layer. In IOP Conference Series: Materials Science and Engineering (Vol. 1080, No. 1, p. 012007). IOP Publishing.

Yang W. S., Noh J. H., Jeon N. J., Kim Y. C., Ryu S., Seo J. 2015 Sci. 348 1234-1237.

Hussain, S. S., Riaz, S., Nowsherwan, G. A., Jahangir, K., Raza, A., Iqbal, M. J., ... & Naseem, S. (2021). Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D. Journal of Renewable Energy, 2021.

Ju M. G., Chen M., Zhou Y., Garces H. F., Dai J., Ma L., Padture N. P., Zeng X. C. 2018 for photovoltaic ACS Energy letters 3 297-304.

Ju M. G., Chen M., Zhou Y., Garces H. F., Dai J., Ma L., Padture N. P., Zeng X. C. 2018 for photovoltaic ACS Energy letters 3 297-304.] [Chen M., Ju M. G., Carl A.D., Zong Y., Grimm R. L., Gu J., Zeng X. C., Zhou Y., Padture N. P. 2018 Joule 23 558-570.

M. Chen et al., “Cesium titanium (IV) bromide thin films based stable leadfree perovskite solar cells,” Joule, vol. 23, no. 3, pp. 558–570, Mar. 2018.

S. Ahmed, F. Jannat, M. A. K. Khan, and M. A. Alim, “Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D,” Optik, vol. 225, pp. 1–13, Jan. 2021.

various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell,” Optik, vol. 217, pp. 1–7, Sep. 2020.

Chakraborty, K., Choudhury, M. G., & Paul, S. (2021). Study of physical, optical, and electrical properties of cesium titanium (IV)-based single halide perovskite solar cell. IEEE Journal of Photovoltaics, 11(2), 386-390.

Chakraborty, K., Choudhury, M. G., & Paul, S. (2021). Study of physical, optical, and electrical properties of cesium titanium (IV)-based single halide perovskite solar cell. IEEE Journal of Photovoltaics, 11(2), 386-390.

Siekmann, J., Ravishankar, S., & Kirchartz, T. (2021). Apparent defect densities in halide perovskite thin films and single crystals. ACS Energy Letters, 6(9), 3244-3251.

Zhen-Qi Li, Ming Ni, Xiao-Dong Feng, Simulation of the Sb2Se3 solar cell with a hole transport layer, Mater. Res. Express 7 (2020), https://doi.org/10.1088/2053- 1591/ab5fa7, 016416.

C. Chen, D.C. Bobela, Y. Yang, et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics, Front. Optoelectron. 10 (2017) 18–30, https://doi.org/10.1007/s12200-017-0702-z.

Zhen-Qi Li, Ming Ni, Xiao-Dong Feng, Simulation of the Sb2Se3 solar cell with a hole transport layer, Mater. Res. Express 7 (2020), https://doi.org/10.1088/2053- 1591/ab5fa7, 016416.

Aseena, S., Abraham, N., & Babu, V. S. (2021). Optimization of layer thickness of ZnO based perovskite solar cells using SCAPS 1D. Materials Today: Proceedings, 43, 3432-3437.

Chakraborty, K., Choudhury, M. G., & Paul, S. (2021). Study of physical, optical, and electrical properties of cesium titanium (IV)-based single halide perovskite solar cell. IEEE Journal of Photovoltaics, 11(2), 386-390.

Bishnoi S., Pandey S. K. 2018 IET Optoelectronics 12 185-190.

R. Soni, R. Eva, M. Barea, and F. Fabregat Santiago, “Analysis of the origin of Open Circuit Voltage in Dye Solar Cells” Journal of Physical Chemical Letters, Vol.3, N°12, pp 1629-1634.

G. Xosrovashvili, N.E. Gorji,” Numerical analysis of TiO2/Cu2ZnSnS4 nanostructured PV using.

AZZOUZI, G. (2014). Study of silicon solar cells performances using the impurity photovoltaic effect (Doctoral dissertation).

Simya, O. K., Mahaboobbatcha, A., & Balachander, K. (2015). A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices and Microstructures, 82, 248-261.




DOI: https://doi.org/10.31763/simple.v5i1.57

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Md Abdul Halim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Signal and Image Processing Letters

ISSN Online: 2714-6677 | Print: 2714-6669
Published by Association for Scientific Computing Electrical and Engineering (ASCEE)
Website : https://simple.ascee.org/index.php/simple/
Email 1 : simple@ascee.org
Email 2 : azhari@ascee.org


 

View My Stats