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1. Introduction 
High-sensitivity sensors are very vulnerable to noise when reading data from environment [1]. 

Vibration, wind pressure, are some examples of external disturbances which cause noise on data-
reading. Meanwhile, most systems nowadays require high-sensitivity sensors to increase its system 
performances [2] [3]. In example, high-sensitivity accelerometer and gyro are needed in robot systems 
[4] [5] [6], quad-rotors [7] and maglev systems [8]. These sensors are commonly being uncovered 
from external disturbances such as wind pressure and vibration of rotors. This can result noise on data-
readings. For example, Fig. 1 shows the unfiltered result of ADC readings of an accelerometer of an 
unmoving balancing wheel. Based on Fig. 1, it can be known that sensor readings are affected by noise 
or disturbances since the result are varying for an unmoving robot. 

Noise on data-readings can be fatal since the real measured-data are used as an input to a controller. 
High-sensitivity sensors contribute to the sensitivity of a controller. If noise is calculated as the 
measurement data, the control system cannot achieve its best performances or even fail to control the 
system. As for previous case of a varying data result taken from an accelerometer of unmoving 
balancing robot, the noise could affect the controller’s performance as the controller will respond to 
the ‘error’, which causes by the difference of the result from sensor’s readings with the referenced 
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acceleration. The controller may become too aggressive while controlling the robot’s movement. 
Furthermore, this will result to bad system’s performances i.e. uneven trajectory of the robot’s 
movement. 

 
 Unfiltered accelerometer result of unmoving robot 

Ideally, all of the noise from the readings should be cancelled for high-sensitivity sensors. 
However, it is practically impossible to cancel all the noise since it happens due to external 
environment natures. Other options available are to reduce the noise or to separate the noise from the 
real measurement data. 

Most common filters, such as Low Pass Filter (LPF), High Pass Filter (HPF) and Band Pass Filter 
(BPF) are using frequency to differentiate the noise and the real-measurement data. This is the simplest 
method but has some disadvantages. First, we need to know the frequency of the noise. This is 
applicable when the noise has distinctive frequency with the real-measurement data. However, this is 
not applicable when the noise happens in all range of frequencies. 

Kalman filter was proposed by R. E. Kalman in 1960 [9], and also called Linear Least Mean 
Squares Estimator (LLSME) or Linear Quadratic Estimation (LQE) [10]. It has been applied to many 
fields such as in robotics [11] [12], control system [13] [14], battery management system (BMS) [15] 
[16], dynamic process control [17], flood prediction [18], wind direction prediction [19], tracking 
objects [20], navigation systems [7], and computer vision application (stabilizing depth 
measurements, fusing data). 

Kalman filter is popular for having easy computation, memory requirements and good capability 
on overcoming noises. It is state technique estimation that can extract information from noisy data 
[21]. Hence, Kalman Filter is best to use for general noise reducer on sensor-reading, especially when 
the information of noise’s frequency that may happen to the sensor-reading is unavailable. 

Despite the advantages, it is challenging to design the required equation of Kalman Filter’s design 
for noise reducer. Moreover, it is also important to be careful while determining some parameters such 
as measurement constant and process variance constant because it affects the filter result much. The 
paper will discuss on how to specifically design the Kalman Filter equation and parameters for noise 
reducer on sensor readings. The Kalman Filter equation will be theoretically analyzed and designed 
based on its component of equation. Also, some values of measurement and variance constant will be 
simulated and then the filtered result will be analyzed to obtain best suitable values of the parameters. 

The paper will be arranged into four sections as follows. The first section will be an introduction. 
The second part will discuss the Kalman Filter and the design process on purpose to reduce signal’s 
noise. The third section is result and discussion about Matlab and Arduino testing. Then last section 
will provide the conclusions. 
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2. Method 
2.1. Kalman Filter 

Kalman filter is an algorithm which is used to predict (or to estimate) the next result based on the 
previous data. It is not categorized as common filters such as LPF, HPF, and BPF. It is basically an 
estimator to predict any state or part in the signal which contains signal. The result of the estimation 
process is similar with eliminating noise from the signal, which is why it is called as Kalman Filter.  

Systems in Kalman Filter are assumed as linear systems. Kalman Filter minimalizes the average 
estimation error square for stochastic linear systems using linear noises sensor. It also minimalizes 
estimation error square function for linear dynamic systems by white measurement and noise 
disturbance. It functions as to estimate states on dynamic systems and also to analyze system’s 
performance [10]. 

There are various types of Kalman Filter, such as standard Kalman Filter [4], Extended Kalman 
Filter [22], Unscented Kalman Filter [23] and Ensemble Kalman Filter [24]. Standard Kalman Filter 
is the simplest while the other types are modified for more complicated tasks. The paper will use 
standard Kalman filter since it contains enough part of equation for noise reducing. 

Kalman Filter has two parts, the predict part and the update part. The standard Kalman Filter 
equation is shown in (1) – (5). 

Predict: 

 𝑥!𝑡|𝑡−1 = 𝐹𝑡𝑥!𝑡−1|𝑡−1	+	𝐵𝑡𝑢𝑡 (1) 

 𝑃%|%&' = 𝐹%𝑃%&'|%&'𝐹%(	+	𝑄% (2) 

Update: 

 𝑥*%|% = 𝑥*%|%&' +𝐾%,𝑦% −𝐻%𝑥*%|%&'0 (3) 

 𝐾% = 𝑃%|%&'𝐻%(,𝐻%𝑃%|%&'𝐻%( + 𝑅%0
&'

 (4) 

 𝑃%|% = (𝐼 − 𝐾%𝐻%)𝑃%|%&' (5) 

where 𝑥 is estimated state, 𝐹 is state transition matrix, 𝑢 is control variables, 𝐵 is control matrix, 𝑃 
is state variance matrix, 𝑄 is process variance matrix, 𝑦 is measurement variables, 𝐻 is measurement 
matrix, 𝐾 is Kalman gain, 𝑅 is measurement matrix, 𝑡|𝑡 is current time period, 𝑡 − 1|𝑡 − 1 is previous 
time period, and 𝑡|𝑡 − 1 is intermediate steps. 

Equations (1) to (5) can be called as Kalman Filter system model and its purpose is not defined 
yet. Therefore, they can be modified based on the designed purpose and how complex the system will 
be. To implement Kalman Filter algorithm, so that it can be used to reduce noise of sensor-readings, 
some adjustments for the conditions are needed. Those adjustments are as follows. 

1. Predicting the state 
On this stage, adjustments are done in (1) by giving the score 𝐹! = 1 because there is no state 
transition. Thus, reducing the system’s input component 𝐵! because the used system does not 
have any input 𝑢!. The adjusted equation is shown in (6).  

 𝑥%|%&' = 𝑥%&'|%&' (6) 

2. Predicting the error 
Since 𝐹! = 1, then (2) becomes (7).  

 𝑃%&' = 𝑃%&'|%&'+𝑄% (7) 
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3. Updating the state value 
From (3), 𝐻! = 1 since the sensor data that will be filtered is only consisted of one sensor 
reading. Hence, the equation can be written as (8). 

 𝑥%|% = 𝑥%|%&' +𝐾%(𝑦% − 𝑥%|%&') (8) 

4. Calculating the gain of Kalman 
Since 𝐻! = 1, then (4) can be written as (9).  

 𝐾% = 𝑃%|%&'(𝑃%|%&' + 𝑅)&' (9) 

5. Updating the error value 
Since 𝐻! = 1, then (5) can be turned into (10). 

 𝑃%|% = (1 − 𝐾%)𝑃%|%&' (10) 

2.2. Kalman Filter for Noise Reducer 
After the adjustments are done, Kalman Filter equation for reducing noise of sensor-reading can 

be rewritten as (11) – (15). 
Predict: 

 𝑥%|%&' = 𝑥%&'|%&' (11) 

 𝑃%&' = 𝑃%&'|%&'+𝑄% (12) 

Update: 

 𝑥%|% = 𝑥%|%&' +𝐾%(𝑦% − 𝑥%|%&') (13) 

 𝐾% = 𝑃%|%&'(𝑃%|%&' + 𝑅)&' (14) 

 𝑃%|% = (1 − 𝐾%)𝑃%|%&' (15) 

2.3. Algorithm 
The algorithm of Kalman filter, which is based on (11) – (15), is illustrated as flowchart as in Fig. 

2. It can be implemented through Matlab, Arduino or another programming sources. After the program 
starts, some initialization must be made for some variables and constants. In this step, the process 
variance constant 𝑄 and the measurement constant 𝑅 must be chosen properly. Initially, the values of 
the estimated state variable 𝑥! can be set to zero and the state variance variable 𝑃! can be set to one. 
The next step is to make the sensor data as the input of the Kalman filter as unprocessed signal. The 
third step is to calculate the predict part which consists of the prediction estimated state variable 
𝑥𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and the prediction state variance variable 𝑃𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡. 

The fourth step is to calculate the update part, which actually consists of the Kalman gain 𝐾! the 
updated estimated state variable 𝑥!, and the updated state variance variable 𝑃!. In the update part, the 
filtered data is the updated estimate state variable 𝑥! and will be shown as the output of the algorithm. 
Some other values such as the last estimated state and the last state variance is also saved as previous 
data for next iteration as the looping process is doing lifetime until the system is terminated. The 
sample source is available in the appendix. 

3. Results and Discussion 
3.1. Matlab Implementation 

The research is done by doing simulation in Matlab. The research scenario is by making a signal 
with noise then it will be filtered by using Kalman Filter. Both data, before and after it gets filtered, 
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are compared to find out the Kalman Filter performances. Hence, some parameters in Kalman Filter, 
which are R and Q matrices, is changed by some values and then is analyzed to seek which ones are 
the optimal ones to get the best result of the filter.  

The test results are shown in Fig. 3, Fig. 4 until Fig. 8. The X-axis shows time and Y-axis shows 
the data. Green-colored signal is input signal which has original data, some noises, disturbance and 
extreme variation value. The red-colored signal is the input signal result after getting filtered by 
Kalman Filter. In testing, it is assumed that the data from random signal is the values of sensor reading 
with big noise and disturbance. 

 
  Kalman Filter Flow Chart 

The first examination is in Fig. 4 where using the measurement constant, 𝑅 = 1 and the variance 
constant, 𝑄 = 1. Based on Fig. 4 the input signal only gets filtered a bit when it is compared to the 
input signal. Moreover, the values are varying drastically. This may result as very aggressive system 
response.  

The second examination is shown in the Fig. 5 where the measurement constant 𝑅 = 1 and the 
variance constant 𝑄 = 0.1. Based on Fig. 5, the input signal starts to get filtered better than before. 
However, the values are still varying drastically although not as big as previous test filtered result. 
This may still result in a very aggressive system response. Parameter values from both of this and 
previous examination are not suitable to be implemented into real systems. 

Start 

End 

𝑆𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎 

Calculate 
𝑋𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 	𝑋𝑡_𝑝𝑟𝑣 

𝑃𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 	𝑃𝑡_𝑝𝑟𝑒𝑣 + 𝑄 

Calculate 
𝐾𝑡 = 	𝑃𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡/(𝑃𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 + 𝑅) 

𝑋𝑡 = 	𝑋𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 + (𝐾𝑡 ∗ (𝑆𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎 − 𝑋𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡)) 
𝑃𝑡 = 	(1 − 𝐾𝑡) ∗ 𝑃𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

𝑋𝑡_𝑝𝑟𝑒𝑣 = 	𝑋𝑡 
𝑃𝑡_𝑝𝑟𝑒𝑣 = 	𝑃𝑡 

𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑎𝑡𝑎 = 	𝑋𝑡 

 While(1) 

No 

Yes 

𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑎𝑡𝑎 

Initialization 𝑅,𝑄, 𝑃_𝑡 
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The third and fourth examination respectively are shown in the Fig. 6 using 𝑅 = 1 and 𝑄 = 0.01 
and Fig. 7 using 𝑅 = 10 and 𝑄 = 0.1). The both examination is the best two of filter results because 
the noise is able to be reduced yet the original data characteristics are still preserved. Similar results 
are shown by those figures, most possibly because of the same ratio difference of R and Q values. 
Based on the examination, both of the parameter values are suitable to be implemented into the real 
system. 

The fifth examination is shown in Fig. 8 using 𝑅 = 100 and 𝑄 = 0.1. Based on Fig. 8, the input 
signal loses its original data so that it can be said that the ratio difference of R and Q should not be 
greater than 1000 or it will give overly-filtered result. Thus, the parameter is not suitable to be 
implemented into real system because of the loss of original data characteristics. 

 

 
  First result with 𝑅 = 1 and 𝑄 = 10 

 

 
  Second result with 𝑅 = 1 and 𝑄 = 1 
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  Third result with 𝑅 = 1 and 𝑄 = 0.1 

 
  Fourth result with 𝑅 = 1 and 𝑄 = 0.01 

 
  Fifth result with 𝑅 = 10 and 𝑄 = 0.1 
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  Sixth result with 𝑅 = 100 and 𝑄 = 0.1 

Based on the examination from Fig. 3 until Fig. 7, those constants highly affect the noise reducer. 
The bigger the ratio between R and Q, the bigger the noise damping effect. To investigate the damping 
effect, the filter result is then compared to the real values. The difference then can be seen as an error 
equation which can be written as follows 

 �̅� = |𝑥) − 𝑦)| (16) 

The equation �̅� is known as mean error where 𝑥 is the data values and 𝑦 is filter results. The 
calculations from the equation are shown as in Table 1 on mean error column. Based on Table 1, it 
can be seen that the bigger difference between 𝑅 and 𝑄 make bigger mean error values. Besides, the 
same 𝑅 and 𝑄 difference values result in similar value of mean error, whatever the values of 𝑅 and 𝑄. 
By comparing Table 1 with previous analysis from the figures, best parameters which provide result 
with its original data characteristics have mean error values range from 40 to 55. 

Table 1.  Mean Error and Ratio Value 

Experiment Number 
Kalman Filter Parameter Value R and Q 

Ratio Mean Error 
R Q 

1 1 1 1 26.0677 

2 1 0.1 10 44.7392 

3 1 0.01 100 53.4466 

4 10 0.1 100 53.4541 

5 100 0.1 1000 56.9959 
 

3.2. Arduino Implementation 
After simulation using Matlab, the next step is to implement Kalman Filter in Arduino to reduce 

the noise of IMU (Inertial Measurements Unit) sensor. The IMU sensor consists of Accelerometer 
Sensor and Gyro Sensor. The results of accelerometer sensor noise reducer are shown by Fig. 9 and 
Fig. 10. The X-axis on those figures is the n-th data and Y-axis is the 10-bit-ADC sensor data. Green-
colored line represents the sensor data and red-colored line represents the result of Kalman filter. 
Parameters values of Fig. 9 are R=10 and Q=0.1. Meanwhile, R=10 and Q=0.01 are used on Fig. 10. 

Fig. 9 and Fig. 10 shows that the noise is able to be reduced by using Kalman Filter. The ratio of 
R and Q on Fig. 9 is 100 and 1000 on Fig. 10. The result from Fig. 9 provides better performance in 
preserving the original data characteristics than the result from Fig 10. The bigger the ratio of R and 
Q make smoother filter result. However, if the ratio difference is too wide, the original data loss may 
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happen as in Fig. 10. The loss of original data characteristics should be avoided to present real 
measurement of the sensor. 

 

  Seventh result with 𝑅 = 10 and 𝑄 = 0.1 

 

  Eighth result with 𝑅 = 100 and 𝑄 = 0.1 

4. Conclusion 
Based on the simulation and test result, a proposed equation of modified Standard Kalman Filter 

is able to reduce noise in sensor readings. The extreme increase and decrease of the result can be 
damped so that it will not happen on the output. The damping value of the filter depends on the 
constants difference. If R and Q has big ratio difference like 1000, 10000, and so on, the damping will 
get bigger and can reduce the original data. Meanwhile, if the ratio difference of R and Q has smaller 
difference like 10, 1, 0,1 and so on, the damping will get smaller till it does not have any damping 
effect. The recommended ratio difference of R and Q values is 100. 
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Appendix 
a. Matlab Code Kalman Filter Sample Program 

 

b. Arduino Code Kalman Filter Program 

 

clear; close all; clc; 
  
xk = 0; Pk = 0; R  = 100; Q  = 1; 
  
for kk=1:100  
    zk = (rand-rand)*100; 
    Pk = Pk + Q; 
    Kk = Pk / ( Pk + R ); 
    xk = xk + (Kk * (zk - xk) ); 
    Pk = (1-Kk)*Pk; 
    buff_xk(kk) = xk; 
    buff_zk(kk) = zk; 
end 
  
figure(1) 
hold on 
plot(buff_xk,'r' ,'linewidth',2 ) 
plot(buff_zk,'g' ,'linewidth',2 ) 
title('Random Signal and Kalman Filter with R = 100; Q = 1') 
xlabel('time'); ylabel('value') 
legend('Kalman Filter Signal','Random Signal from Sensor') 

 

float SensorData, KalmanFilterData; 
float Xt, Xt_update, Xt_prev; 
float Pt, Pt_update, Pt_prev; 
float Kt, R, Q; 
 
void setup() { 
  Serial.begin(9600); 
  R=100; Q=1; Pt_prev=1; 
} 
 
void loop() { 
  SensorData = analogRead(A0); 
  Xt_update = Xt_prev; 
  Pt_update = Pt_prev + Q; 
 
  Kt = Pt_update / (Pt_update + R); 
  Xt = Xt_update + ( Kt * (SensorData - Xt_update)); 
  Pt = (1 - Kt) * Pt_update; 
 
  Xt_prev = Xt; 
  Pt_prev = Pt; 
 
  KalmanFilterData=Xt; 
 
  Serial.print(SensorData,3); 
  Serial.print(","); 
  Serial.print(KalmanFilterData,3); 
  Serial.println(); 
 
  delayMicroseconds(100); 
} 
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