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1. Introduction 

Based on the results of the IMD World Competitiveness Ranking (WCR) research in 2023, 
Indonesia ranked 51st out of 67 countries in terms of infrastructure, including road infrastructure [1]. 
However, roads play an important role in supporting community mobility, goods distribution, and 
economic and social growth [2]. This is evidenced by data from the Ministry of Public Works and 
Public Housing (PUPR) in 2023, showing that Indonesia only has approximately 43.98% of roads in 
good condition. East Java, as the province with the largest road infrastructure, recorded that 37% of 
regency/city roads are in poor condition and ranks third nationally in terms of the highest number of 
damaged roads [3]. Road damage that is not immediately addressed can endanger road user safety and 
potentially cause fatal accidents [4], even to the point of claiming road users' lives [5]. Road damage 
is recorded as one of the factors causing traffic accidents, where the Indonesian National Police 
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 Road damage is a serious issue in Sidoarjo Regency, posing risks to road 
users' safety. This study aims to classify road surface conditions using a 
Convolutional Neural Network (CNN) model based on the Inception 
ResNet-V2 architecture. The research develops an image-based 
classification model by combining secondary data from Kaggle and 
primary data obtained through Google Street View API scraping, along 
with training strategies such as data augmentation, class balancing, early 
stopping, and model checkpointing. A total of 885 images were used, 
categorized into three classes: potholes, cracks, and undamaged roads. 
The model was trained over 20 epochs with early stopping triggered at 
epoch 15, when validation accuracy reached 95.95%. Evaluation on the 
test set showed a test accuracy of 83%. The undamaged road class 
achieved the highest performance with an F1-score of 0.89, while the 
pothole class recorded an F1-score of 0.79. The lowest performance was 
observed in the cracked road class, with an F1-score of 0.65, indicating 
the model's limited ability to detect fine crack features. This limitation is 
likely due to class imbalance and visual similarity between classes. 
Although the model demonstrated good generalization for the two 
majority classes, the performance gap between validation and test 
accuracy highlights the need to improve detection for minority classes. 
Future work is recommended to explore advanced augmentation 
techniques, increase the representation of minority class data, and 
consider alternative architectures or ensemble methods to enhance the 
model’s sensitivity to subtle road damage features. 
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recorded 40 accident cases in 2021 that were directly caused by damaged road conditions [6]. 
Additionally, the impact of road damage has a fairly strong relationship with accidents, although not 
statistically significant [7]. 

Sidoarjo is one of the areas in East Java Province that has relatively poor road conditions. The 
Regent of Sidoarjo, Ahmad Muhdlor Ali, mentioned that as of March 2024, there were 39 points of 
damaged and potholed roads spread across 15 sub-districts out of a total of 18 existing sub-districts 
[8]. Amid the high urgency for road infrastructure repair, the process of identifying and maintaining 
damage is still carried out manually. This method generally requires considerable time and human 
resources, especially in areas that are extensive or difficult to access [6]. The Head of the Technical 
Division of the Public Works and Highways Service of Sidoarjo Regency stated that the collection of 
road damage data in the area still heavily depends on community reports via telephone and field 
inspections. Common types of damage such as cracks and potholes are frequently found and have 
quite high accident risk levels. Sidoarjo residents have also submitted many complaints regarding the 
existence of road potholes in various locations [9], and several accident cases have been reported due 
to riders falling into these potholes [5]. Furthermore, observations at several locations show that the 
most frequently found types of damage are cracks and potholes [10], making both relevant 
representations for the damage classification used in this research. 

The utilization of digital technology is needed to improve efficiency in handling road damage. One 
potential approach is online damage reporting through image uploads, which are then analyzed using 
Convolutional Neural Network (CNN)-based models. This research focuses on developing a road 
damage image classification model, which in the future can be integrated into online reporting 
systems. In this study, CNN with Inception ResNet-V2 architecture is used to classify road damage 
images. CNN is known to be capable of effectively extracting visual features from images [11]. 
Additionally, the Inception ResNet-V2 architecture is known to have superior performance in 
handling complex image data and producing accurate classifications. This architecture combines 
Inception modules, which allow the model to recognize features from various scales in images, as well 
as residual connections that function to maintain information flow between layers so that training is 
more stable, efficient, and capable of producing high accuracy even on complex image datasets [12]. 

The superiority of this architecture has also been proven in previous research, such as by Jinkang 
Wang et al. in a study titled "A Real-Time Bridge Crack Detection Method Based on an Improved 
Inception-ResNet-V2 Structure." The results of that research showed that the Inception ResNet-V2 
architecture achieved 99% accuracy, indicating its ability to effectively recognize complex patterns. 
In that research, Inception ResNet-V2 was used to classify two categories: cracked and not cracked. 
The data used in model training was a combination of three datasets that formed a larger bridge crack 
detection dataset, namely the Bridge Surface Crack Dataset (BSDC). The model was trained using a 
learning rate of 0.001 and 50 epochs [13]. 

Research related to road damage classification has also been conducted by Arif Riyandi et al. in a 
study titled "Classification of Damaged Road Images Using Convolutional Neural Network Method." 
That research classified road images obtained from the Kaggle platform into three categories: 
undamaged roads, cracked roads, and potholed roads. In the preprocessing stage, four stages were 
used: conversion to grayscale, balance filter, mean filter, and median filter. The results of that research 
showed training accuracy of 88% and validation accuracy of 99% with a preprocessing model using 
the grayscale method [14]. Nevertheless, the results of that research showed signs of overfitting in the 
developed model. 

Different from that research, this study implements the Inception-ResNet-V2 architecture which 
has proven superior in handling complex image data. Instead of using filters explicitly as in previous 
research, this study utilizes residual connections and Inception modules to perform automatic and 
deep feature extraction. The Inception structure uses various convolutional kernel sizes to capture 
features at various scales, while simultaneously reducing the number of parameters to keep model 
complexity low. Meanwhile, residual connections allow direct signal flow between layers, both 
forward and backward, thus helping maintain gradient stability, accelerating the training process, and 
improving model performance while reducing overfitting risk [13]. Additionally, this research also 
uses road image data from the Sidoarjo area obtained through integration with the Google Street View 
API, which is expected to improve model accuracy in classifying road conditions in that area. 
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The purpose of this research is to build a road damage image classification model using 
InceptionResNet-V2 architecture, focusing on the Sidoarjo Regency area. This model is expected to 
be integrated into an online road damage reporting system based on image uploads by the community, 
which is currently unavailable. The presence of this model is expected to be an initial step toward a 
digital reporting system that helps the Public Works and Highways Service in conducting road 
identification and maintenance more quickly, efficiently, and data-driven. 

2. Method 

This research was conducted through several systematic stages, starting from data collection to 
model evaluation. These stages were designed to ensure optimal training processes and comprehensive 
evaluation. The overall workflow of this research is illustrated in Fig. 1. As shown in the Figure 1, the 
research begins with secondary and primary data collection, followed by data preprocessing stages 
such as data splitting, normalization, and image augmentation to enrich dataset variation. 
Subsequently, a Convolutional Neural Network (CNN) model with Inception-ResNetV2 architecture 
is used in the training stage. The model is then evaluated using performance metrics such as accuracy 
and confusion matrix. The entire research process was conducted using the Google Colab platform 
with T4 GPU support to accelerate model training. 

 

Fig. 1. Research Stage 

2.1. Data Collecting 

In the data collection process, this research uses two types of data: secondary data and primary 
data. Secondary data was obtained from the Kaggle platform titled "Road Damage". This dataset 
consists of 734 road images classified into three road condition categories: 335 pothole images, 200 
crack images, and 199 images of roads without damage. Meanwhile, primary data was obtained from 
road images in the Sidoarjo Regency area, specifically on roads with regency/city road status. Primary 
data collection was conducted using scraping methods with the assistance of the Street View Static 
API accessed through Google Cloud Console. A total of 100 images were successfully collected as 
primary data. The following are examples of the data Fig. 2. 

 

Fig. 2. Sample Image 

Fig. 2 displays sample road images for each category: cracks, potholes, and undamaged. Image 
acquisition was conducted in the Sidoarjo Regency area, on roads that have regency/city road status. 
In the primary data collection process, latitude and longitude coordinates were first collected. These 
coordinates were then validated using the Google Roads API to ensure that the selected points were 
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actually located on road segments. After successful validation, road images were captured based on 
these coordinates using the Street View Static API from Google Cloud. 

2.2. Labelling Primary Data 

After the image acquisition process, primary data underwent a manual labeling stage conducted by 
the researcher together with road construction experts. Each image was carefully examined and 
categorized into one of three predetermined classes: potholes, cracks, or roads without damage. This 
labeling process was carried out based on damage features visible in the images, with the objective of 
ensuring that the classification conforms to the criteria used in the secondary dataset and guaranteeing 
uniformity of data types between both datasets. This manual labeling is important for maintaining data 
consistency and ensuring accuracy and reliability in the training and evaluation processes in the 
subsequent modeling stage [15]. 

2.3. Pre-Processing Data 

This stage includes various techniques, so the preprocessing methods used need to be adjusted to 
the characteristics of the data being used [16]. In this research, data preprocessing begins with dividing 
the data into three parts: training data, validation data, and testing data. All secondary data was used 
as training and validation data, with an allocation of 80% for training and 20% for validation. The 
division of primary data was based on guidelines from the Ministry of Public Works and Public 
Housing (PUPR), which states that the training dataset must include at least 10% of data originating 
from the studied area for each class or category [17]. Therefore, part of the primary data was included 
as additional training data. In this case, the researcher added 28 images as additional training data, 
equivalent to 10% of the total secondary training data. 

However, for the cracked road and undamaged road categories, the researcher added more than 
10% primary data because the amount of training data from secondary data for both categories was 
less compared to the pothole category. This was done to prevent overfitting due to imbalanced data 
quantities between categories [18]. Although the additional amount has not fully matched the amount 
of data in the most numerous category, this addition is expected to help reduce the risk of overfitting. 
The primary data not used as additional training data was allocated as testing data. This dataset 
division is a crucial stage to ensure that the model can effectively generalize to data that has never 
been seen before [19]. The detailed data distribution is presented in Table 1. 

Table 1.  Data Distribution 

Category Training Data Data Validasi Additional Training Data Testing Data 

Potholes 284 51 28 6 

Cracks 160 40 65 17 

Undamaged Roads 159 40 70 62 

Total 603 131 163 85 

 

Table 1 shows differences in the amount of data in each category. This is due to the limited amount 
of data in the secondary dataset obtained from Kaggle, as well as the primary data collected. 
Subsequently, the image data underwent a normalization process by dividing each pixel value by the 
maximum value of 255. This step converts pixel values to a range of 0 to 1, allowing the model to 
learn faster and more stably during the training process. After normalization, the image data underwent 
an augmentation stage to increase variation in the dataset. Augmentation was performed on training 
data by applying various transformations, such as random rotation up to 20 degrees, vertical and 
horizontal shifts of 20%, zoom in and zoom out up to 20%, horizontal flipping, and filling empty areas 
using the nearest pixel values. 

In the final preprocessing stage, data was divided into batches of size 64, which are groups of data 
processed simultaneously in one training iteration. The use of this batch size helps accelerate the 
training process and produces more stable model weight updates. In CNN, the preprocessing stage is 
relatively fewer compared to other algorithms, because CNN has the ability to automatically optimize 
filters (kernels) during the training process [20]. 
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2.4. Modelling & Training Model 

In the process of developing a road damage level classification model, a Convolutional Neural 
Network (CNN) architecture based on Inception-ResNetV2 with a transfer learning approach was 
used. This approach aims to improve training efficiency by utilizing weights that have been previously 
trained on the ImageNet dataset [21]. Inception-ResNetV2 is a hybrid architecture combining two 
popular CNN models: Inception and ResNet. This architecture combines the advantages of Inception 
modules—which process input data at various scales through several parallel convolution 
operations—with residual connections from ResNet that enable efficient training of deeper networks. 
Residual connections or skip connections allow input from one layer to be passed directly to deeper 
layers, helping to overcome the vanishing gradient problem in complex networks [22].  

Based on Fig. 3, the Inception-ResNetV2 architecture consists of several main components that 
work sequentially. The process begins with the stem section that receives input in the form of 299x299 
pixel images with three color channels (RGB), then extracts basic features using 3×3 convolution and 
pooling operations. After that, the model passes through three main types of modules: five blocks of 
Inception-ResNet-A that use small kernels (1×1 and 3×3) to extract local features, ten blocks of 
Inception-ResNet-B that use combinations of large kernels (1×7 and 7×1) to capture broader spatial 
patterns, and five blocks of Inception-ResNet-C that return to using small kernels to detect detailed 
features. Between these three modules are reduction modules (Reduction-A and Reduction-B) that 
function to reduce the spatial dimensions of feature maps while maintaining important information. 
After passing through all blocks, the final feature maps are processed with average pooling, followed 
by dropout with a keep probability of 0.8, and concluded with a softmax layer for 1000-class 
classification, as in the original architecture [23]. 

 

Fig. 3. Architecture Inception Resnet-V2 

In this research, the Inception-ResNetV2 model was used as a feature extractor by freezing the 
weights from ImageNet training. The final layer of the model was then modified to suit the needs of 
road damage level classification. This modification was done by replacing the fully connected layer 
in the original architecture with several new layers: Global Average Pooling, followed by a Dense 
layer with ReLU activation function, Batch Normalization, Dropout with a rate of 0.5, and concluded 
with a Dense layer with softmax activation function that adjusts to the number of classes in the road 
damage data. 

The model was trained using training and validation data that had been prepared previously. The 
training process was conducted for 20 epochs using the Adam optimizer, categorical crossentropy loss 
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function, learning rate of 0.000001, and accuracy metric as a performance benchmark. The Adam 
optimizer was chosen because its results showed its superiority in most experiments, particularly in 
computer vision classification tasks, where it achieved the highest accuracy and fastest convergence 
[24]. To optimize the training process, two callback functions were used: EarlyStopping with a 
patience parameter of 5 to automatically stop training if validation accuracy does not improve for five 
consecutive epochs, and ModelCheckpoint which functions to save the model with the best 
performance during the training process.  

2.5. Evaluation 

Model evaluation was conducted in two main stages: during the training process and after training 
using test data from the Sidoarjo area. During the training stage, model performance was monitored 
through training and validation data accuracy metrics. This monitoring aims to evaluate the model's 
ability to learn data patterns and detect symptoms of overfitting or underfitting. Accuracy values were 
recorded at each epoch and visualized to analyze the overall learning trends of the model. 

After training was completed, the model was further evaluated using test data to measure the 
performance of road damage level classification. Evaluation was conducted using accuracy metrics, 
confusion matrix, as well as additional metrics such as precision, recall, and F1-score. Accuracy 
provides a general overview of the proportion of correct predictions to the overall test data. The 
confusion matrix, as shown in Figure 4, illustrates the distribution of correct and incorrect predictions 
for each class, helping to identify error patterns that occur. Precision measures the proportion of 
correct positive predictions, recall assesses the model's ability to detect all positive cases, and F1-score 
combines both into one balanced metric, which is very useful for datasets with imbalanced class 
distributions [25].  

As the basis for calculating these metrics, the following are the formulas for accuracy and the 
confusion matrix used in the model evaluation process. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / 𝑇𝑃 +  𝐹𝑃 (1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / 𝑇𝑃 +  𝐹𝑁 (2) 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 •  (𝑅𝑒𝑐𝑎𝑙𝑙 •  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) / 𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (3) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 +  𝑇𝑁 / 𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 +  𝑇𝑁 (4) 

In these formulas, TP (True Positive) is the number of correct positive predictions, FP (False Positive) 
is incorrect positive predictions, FN (False Negative) is positive cases incorrectly predicted as 
negative, and TN (True Negative) is the number of correct negative predictions. These four metrics 
provide a comprehensive evaluation of classification model performance, both generally and per class 
[16]. 

 

Fig. 4. Confusion Matrix 
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3. Results and Discussion 

The collected data was then divided into training and validation data, and stored in structured 
folders to facilitate the process in subsequent modeling stages. During the training stage, this data was 
used to train the classification model using the previously prepared InceptionResNetV2 architecture. 
Table 2 shows the development of model accuracy during the training process. Based on Table 2, the 
training of the Inception ResNet V2 model showed significant performance improvements in the early 
epochs. Training accuracy increased from 73.90% in the first epoch to 91.66% in the 3rd epoch, while 
validation accuracy also rose from 34.10% to 64.16%. This indicates that the initial learning process 
was running effectively. From epochs 4 to 10, training accuracy remained stable above 95%, and 
validation accuracy continued to increase until reaching 94.22%, indicating good generalization 
capability of the model. After epoch 10, model performance began to stagnate. The highest validation 
accuracy was achieved at epoch 15 at 95.95%, then tended not to experience significant improvement 
and slightly decreased in subsequent epochs. This indicates that the model had reached its optimal 
point, and the potential for overfitting began to emerge. 

The early stopping function used was applied appropriately, detecting that no improvement in 
validation accuracy occurred for five epochs after epoch 15. With a patience parameter set at 5, 
training was automatically stopped to prevent training from continuing without performance 
improvement. This strategy was implemented to avoid the risk of overfitting and maintain training 
process efficiency [26]. Additionally, the ModelCheckpoint function was also applied to save the best 
model weights during the training process. This mechanism automatically saves the model every time 
validation accuracy improves. Thus, although training was stopped at epoch 20, the model used for 
final testing was the model from epoch 15, when the highest validation accuracy (95.95%) was 
achieved. This strategy ensures that the selected model is the most optimal version in terms of 
generalization capability to test data. During the training period, the best model was recorded at epoch 
15 with training accuracy of 97.42% and validation accuracy of 95.95%. 

Table 2.  Accuracy Training 

Epoch Training Accuracy Validation Accuracy 

1 0.7390 0.3410 

2 0.8799 0.3873 

3 0.9166 0.6416 

4 0.9530 0.7110 

5 0.9608 0.7688 

6 0.9387 0.8382 

7 0.9560 0.8960 

8 0.9559 0.8844 

9 0.9470 0.8671 

10 0.9655 0.9422 

11 0.9677 0.9422 

12 0.9507 0.9075 

13 0.9492 0.9480 

14 0.9652 0.9538 

15 0.9742 0.9595 

16 0.9550 0.9306 

17 0.9756 0.9538 

18 0.9721 0.9595 

19 0.9671 0.9595 

20 0.9447 0.9538 

 

Fig. 5 shows the training and validation accuracy graph that demonstrates stable and consistent 
learning patterns throughout the training process. Both curves experienced gradual improvement until 
reaching a convergence point, reflecting that the model was not only able to learn from training data 
but also had good generalization capability to validation data. There were no striking differences 
between the two curves, indicating that the training process proceeded in a balanced manner without 
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significant overfitting indications. The stability of the curves in the final phase of training reinforces 
confidence that the model had achieved optimal performance, and the training process had run 
effectively until the automatic stopping point. After the model was saved at epoch 15, it was used to 
make predictions on previously separated test data. The purpose of this testing was to evaluate the 
model's generalization capability to new data that had never been encountered during the training or 
validation process. Evaluation using test data was conducted by calculating several classification 
metrics such as accuracy, precision, recall, and F1-score, as well as displaying a confusion matrix to 
see the distribution of model predictions for each class. 

The following graph illustrates the changes in training process accuracy. Based on the graph, it is 
evident that at the beginning of training, particularly at the 3rd epoch, there was a decrease in accuracy 
and an increase in loss. However, subsequently, the model demonstrated significant performance 
improvement until reaching its optimal performance at the 11th epoch. This indicates that the model 
successfully learned the patterns from the data optimally before eventually experiencing stagnation. 

 

Fig. 5. Accuracy Training Curve 

The evaluation results are displayed in Table 3. Model evaluation on test data shows that the model 
has fairly good overall classification performance, with accuracy reaching 83%. Among the three 
tested classes, the undamaged road class showed the best performance, with precision of 0.92, recall 
of 0.87, and f1-score of 0.89. This indicates that the model is highly reliable in recognizing road 
conditions that have not experienced damage. Meanwhile, the pothole road class also showed fairly 
good performance, especially in the recall aspect which reached 0.87, meaning that most pothole road 
cases were successfully recognized by the model. However, its precision was slightly lower (0.72), 
indicating that there were still some false positive predictions for this class. 

In the cracked road class, model performance was relatively lower compared to the other two 
classes, with precision and recall both valued at 0.65. The f1-score value which was also 0.65 shows 
that the model was not yet optimal in distinguishing cracked road conditions from other classes. This 
could be caused by visual similarities between cracks and other road surfaces, or by imbalanced 
training data distribution. Overall, the model demonstrates satisfactory classification capability, 
especially in detecting undamaged and potholed road conditions, but still has room for improvement 
in crack detection. The training strategies that have been implemented have proven capable of 
producing a model with fairly good generalization to real test data. 

Table 3.  Evaluation Model Testing 

Label Precision Recall F1-score Support 

Potholes 0.72 0.87 0.79 15 

Cracks 0.65 0.65 0.65 17 

Undamaged Roads 0.92 0.87 0.89 62 

Accuracy 0.83 94 
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Additionally, Fig. 6 presents the confusion matrix that displays the number of correct and incorrect 
predictions for each class. Based on the confusion matrix, the model demonstrates reasonably good 
performance in classifying road images into three classes: pothole, crack, and undamaged road. 

 

Fig. 6. Confusion Matrix Evaluation 

In the pothole class, 13 out of 15 data points were correctly classified, while one data point each 
was misclassified as pothole and undamaged road. These errors are likely attributed to the small size 
of the potholes, resulting in visual features that are not sufficiently prominent for the model to 
recognize as damage, and tend to resemble crack textures or intact road surfaces. For instance, as 
shown in Fig. 7, there is a small pothole in the upper left corner. Additionally, the image contains tire 
stains that resemble cracks, causing the model to tend toward predicting cracked roads. 

 

Fig. 7. Sampel Data Testing of Pothole 

For the pothole class, the model's performance was not as robust as the other two classes, where 
only 11 out of 17 data points were correctly classified, while two data points were misclassified as 
pothole and four others as undamaged road. The misclassification into the undamaged road class is 
presumed to occur due to very thin or faint cracks, causing the model to perceive the road surface as 
still being in good condition. For example, Fig. 8 exhibits thin cracks that closely resemble the 
undamaged road class, leading to incorrect predictions by the model. 
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Fig. 8. Sampel Data Testing of Crack 

Meanwhile, the model demonstrated excellent performance on the undamaged road class, with 54 
out of 62 data points correctly classified. Only three data points were classified as pothole and five as 
pothole, indicating a relatively low error rate. Overall, the model achieved satisfactory accuracy on 
the test data with tolerable misclassification errors. Nevertheless, accuracy improvement is still 
required, particularly for the pothole class, with emphasis on enhancing the model's capability to 
distinguish the visual characteristics of fine cracks from normal road surfaces. 

Overall, the model exhibits reasonably good classification performance for road conditions in 
urban areas such as Sidoarjo. The test results demonstrate the model's reliable generalization 
capability, particularly for detecting undamaged and potholed road conditions. However, this study 
has limitations regarding the quantity and diversity of data utilized. The secondary dataset from 
Kaggle is relatively limited in road condition variations, while the primary dataset collected 
independently only encompasses regency/city-level roads. This limitation prevents comprehensive 
testing of the model against road conditions beyond these categories, such as provincial, national, or 
rural roads. Therefore, dataset expansion and balancing constitute crucial steps in further development 
to enable better generalization across various road environment types. 

4. Conclusion 

This study successfully implemented the Inception ResNet-V2 architecture to classify road damage 
levels in Sidoarjo Regency into three categories: undamaged roads, cracked roads, and potholes. The 
model was trained using a combination of secondary data from Kaggle and primary data collected via 
Google Street View API. Training results showed a peak validation accuracy of 95.95% at the 15th 
epoch, and a test accuracy of 83%. The best performance was observed in the undamaged road class 
with an F1-score of 0.89, while the lowest performance was found in the cracked road class (F1-score 
0.65). Additionally, the model struggled to detect small potholes due to the dominance of large pothole 
images in the training set, resulting in an F1-score of 0.79 for that class. Although the Inception 
ResNet-V2 architecture proved effective in extracting complex image features and showed stable 
training behavior, this study still faced significant limitations. One major issue was class imbalance, 
which negatively affected detection performance—particularly for the cracked road class, which 
functioned as a minority class and was frequently misclassified. 

Future research should consider additional strategies to address this issue, such as cost-sensitive 
learning, synthetic oversampling (e.g., SMOTE), or adjusting the loss function weights. Moreover, 
exploring enhanced model architectures such as a hypothetical Inception-ResNet-V3—which 
integrates deeper multi-scale convolution modules, improved residual connections, and attention 
mechanisms—could lead to better sensitivity in detecting subtle or visually ambiguous damage 
features. The proposed model shows strong potential for integration into image-based road damage 
reporting systems for public use, which could significantly improve the efficiency of infrastructure 
monitoring and maintenance. Beyond its practical implications, this study also contributes 
theoretically to the development of image classification systems for public infrastructure, and 
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demonstrates the applicability of modern deep learning architectures within the context of limited and 
complex local datasets in Indonesia. 
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