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1. Introduction 

Corn is one of Indonesia's strategic food commodities, playing a crucial role in national food 
security and the economy security and the economy. As the primary carbohydrate source after rice, 
corn is consumed in various forms, such as corn rice and other processed products [1]. In addition to 
being a staple food, corn serves as a key component in the livestock feed industry, particularly for 
poultry, with more than 55% of the national corn production allocated for this purpose [2]. The high 
demand for corn in the livestock sector highlights the importance of stable and high-quality production 
to support food security and related industries [3][4]. Nevertheless, corn production in Indonesia faces 
several challenges that may affect yield and product quality. Pest infestations, such as Java Downy 
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livestock feed. However, its quality is frequently compromised by factors 
such as mechanical damage during harvesting, fungal contamination, and 
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using a batch size of 32 and a learning rate of 0.001. The results 
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precision of 98.3%, recall of 100%, and an F1-score of 99.1%, as 
validated by a confusion matrix that highlights the model’s classification 
reliability. This automated system significantly enhances the efficiency 
and accuracy of corn quality assessment, offering a scalable solution to 
replace outdated manual techniques. By providing a reliable tool for 
quality differentiation, this study supports Indonesia’s agricultural and 
livestock industries, with potential for broader application in optimizing 
crop management and ensuring food security under varying 
environmental conditions. 
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Mildew, and limitations in transportation infrastructure to export ports are among the primary 
obstacles in the national corn supply chain [2],[5]. Fluctuations in production also lead to market 
instability, impacting corn prices and its derivative products, including animal feed and other food 
ingredients [6]. Therefore, innovative efforts are needed to enhance corn productivity and quality to 
meet bot domestic and export market demands. 

Factors contributing to the decline in corn quality can be categorized into three main groups: 
mechanical damage, environmental and biological factors, and climatic conditions. Mechanical 
damage occurring during harvesting, drying, and processing can cause kernel breakage and cracking, 
increasing the risk of spoilage and reducing market value [7][8]. Additionally, fungal infections, such 
as those caused by Fusarium and Aspergillus, can lead to mycotoxin contamination, which poses 
health risks to both humans and livestock [9]. Meanwhile, climatic conditions such as drought and 
cold stress also contribute to reduced quality and yield [10]. Manual quality assessment of corn is still 
widely used in Indonesia; however, this method has significant limitations. Visual inspection requires 
extensive labor, is time-consuming, and often results in inconsistencies due to human subjectivity 
[11][12]. Moreover, manual methods are inefficient for industrial-scale operations, which require 
rapid and accurate quality assessments. Therefore, automated methods are needed to improve 
efficiency and accuracy in corn quality classification. The classification of corn quality is a crucial 
aspect of the agricultural supply chain, particularly in distinguishing between seed corn and 
commercial corn. Accurate classification enables the alignment of corn with specific market demands, 
such as direct consumption, animal feed, or industrial raw materials [13][14]. Several morphological 
characteristics are essential for assessing corn quality, including kernel length, width, and shape [15], 
[16], as well as color features extracted from images [16] and the texture and internal structure of the 
kernel [17]. In addition to enhancing market value, precise classification can reduce the risk of product 
rejection due to substandard quality [18]. Furthermore, food safety can be better ensured by 
maintaining low levels of mycotoxins in consumed corn [19]. 

Machine learning-based methods have been widely applied in corn quality classification, yielding 
promising results. Several commonly used algorithms include Support Vector Machine (SVM), 
Random Forest (RF), K-Nearest Neighbors (KNN), and Decision Tree (DT), which have 
demonstrated high accuracy in detecting corn quality and variety [20]-[25]. Additionally, Artificial 
Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) have proven to be effective in 
classifying the quality and damage of corn kernels or seeds, achieving higher accuracy compared to 
conventional methods [15],[17],[26][27]. Another study utilized a ResNet50-based Convolutional 
Neural Network (CNN) for Milkfish classification [28]. 

The Artificial Neural Network (ANN) approach in corn quality classification demonstrates 
significant potential in enhancing efficiency and accuracy in the agricultural sector. Various ANN 
methods have been successfully applied to classify corn kernels based on morphological 
characteristics, color, and texture. One such approach is the Multilayer Perceptron Neural Network 
(MLPNN), which has achieved an accuracy of 91.85% in distinguishing between damaged and intact 
corn kernels [26]. The MLPNN classifier can be adapted to differentiate between seed corn and 
commercial corn by training it on relevant morphological and color features. Additionally, the Self-
Adaptive Back Propagation Neural Network (BPNN), combined with hierarchical clustering, has 
demonstrated an accuracy of over 90% in classifying corn kernels into multiple categories [15]. This 
approach can be tailored to classify seed corn and commercial corn by selecting appropriate features 
and training the network accordingly. On the other hand, Convolutional Neural Networks (CNNs) 
have also been widely used in image-based corn quality classification. For instance, Deep 
Convolutional Neural Networks (DCNNs) have achieved an accuracy of 97.6% in classifying corn 
seed varieties and quality [17], making them suitable for distinguishing seed corn from commercial 
corn by training the network on corn kernel images. Moreover, custom CNN models, incorporating 
residual networks and specialized layers, have demonstrated high accuracy, reaching up to 99.3% in 
classifying corn seed quality [27]. These models can be further adapted to classify seed corn and 
commercial corn by focusing on specific quality attributes. By implementing the appropriate ANN 
methods, this study aims to achieve high accuracy levels that can serve as a reference for the industry 
in establishing corn quality standards, thereby streamlining production processes and improving 
efficiency in the agricultural sector. 
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2. Methods 

To address the challenges encountered during the research process, a structured research 
methodology was implemented to identify appropriate solutions. This study employs data processing 
techniques using data mining, specifically utilizing the Neural Network algorithm. 

2.1. Data Collection 

The dataset utilized in this study comprises an internal dataset representing the quality of corn 
harvests, obtained from a case study conducted at PT BISI International Tbk. Initially recorded in 
Microsoft Excel format, the data was later converted into CSV (Comma-Separated Values) format for 
analysis. The attributes included in the corn harvest quality dataset are presented in Table 1. The 
dataset consists of 2,026 records, with the quality attribute serving as the target variable. This variable 
is classified into two categories: breeder and commercial. The breeder category represents the highest 
quality level (grade one), while the commercial category corresponds to the second level of corn 
quality. In this dataset, Class 0 represents the commercial grade, whereas Class 1 denotes the breeder 
grade. 

Table 1.  Data Attributes 

Attribute Data Type Description 

Damage Seed Floating Total percentage of damaged seeds 

Broken Seed Floating Total percentage of broken seeds 

Moldy Seed Floating Total percentage of moldy seeds 

Foreign Material Floating Total percentage of foreign material mixed with corn seeds 

Aflatoxin Floating Percentage of corn seeds contaminated with chemicals 

Quality  Quality Integer Quality parameter of corn seeds 

 

2.2. Data Preprocessing 

Data preprocessing in this study involves preparing the dataset, including handling missing values. 
The primary objective of this step is to ensure that the data used for analysis, reporting, and decision-
making is accurate, consistent, and reliable. In the case of the corn harvest quality dataset, among the 
2,026 records, one record was identified with missing data in the foreign material attribute. A common 
approach to addressing incomplete data is to impute the missing values, thereby maintaining data 
integrity and enhancing the quality of analysis. 

To resolve this issue, the mean imputation method was applied. This technique involves calculating 
the mean of all available values in the foreign material column and substituting the missing data with 
this mean value. Mean imputation helps preserve the original data distribution without significantly 
altering the descriptive statistics of the dataset. The formula for mean imputation is presented in 
Equation (1), where n represents the total number of complete records. 

 �̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 [29] (1) 

2.3. Data Splitting 

In this experiment, the dataset consisting of 2,026 records is divided into training data, validation 
data, and testing data with specific percentage allocations. Training data comprises 70% of the dataset, 
validation data 20%, and testing data 10%. Validation data serves as a subset used to monitor the 
model's performance during training. Unlike training data, it is not directly used for model training 
but rather helps prevent overfitting and assists in hyperparameter selection. In contrast, testing data is 
utilized solely for the evaluation process and is not involved in training the Neural Network model. 

2.4. Feature Standardization 

Feature standardization in the dataset involves transforming the data by scaling each feature to 
have a mean of 0 and a standard deviation of 1, achieved by subtracting the mean value �̅� from each 
feature’s value 𝑥𝑖 and dividing the result by the standard deviation 𝑍𝑖, as expressed in Equation (2), 
resulting in a standardized value 𝑍𝑖 for the i-th data point, with the primary goal of ensuring all features 
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are on a uniform scale to prevent any single feature from disproportionately influencing the model 
due to a larger value range. 

 𝑍𝑖 =
𝑥𝑖 − �̅�

𝑆
 [29] (2) 

2.5. Neural Network Model 

The architecture of the Neural Network model used in this study is designed for binary 
classification and consists of two hidden layers and one output layer. The ReLU activation function is 
applied in the hidden layers to enhance learning representations, while the sigmoid activation function 
in the output layer facilitates the determination of the output class. 

2.5.1. Hyperparameter 

A Neural Network is structured as a sequential model consisting of an input layer, hidden layers, 
and an output layer. Each neuron in the Neural Network processes information by computing a 
weighted sum of its inputs, followed by the addition of a bias term. This computation is 
mathematically represented in Equation (3). 

A Neural Network, structured as a sequential model with an input layer, hidden layers, and an 
output layer, processes information by computing a weighted sum of inputs plus a bias term in each 
neuron, as shown in the equation (3), where W is the weight, x is the input, and b is the bias, followed 
by activation functions like ReLU (equation (4)), in hidden layers and sigmoid (equation (5)), in the 
output layer for binary classification (0 or 1), based on five input features in this study. The hidden 
layers, optimized through hyperparameter tuning of layer and unit counts, use ReLU and dropout (rate 
0-1) to prevent overfitting, while the model minimizes error using binary cross-entropy loss (equation 
(6)), and the Adam optimizer (equation (7)), adjusting weights over multiple epochs and mini-batch 
gradient descent for efficient training. 

 𝑦 = 𝑊𝑥 + 𝑏 [30] (3) 

 𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) [30] (4) 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 [30] (5) 

 𝐿(𝑦, 𝑝) = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝))[30] (6) 

 𝑊𝑡 = 𝑊𝑡−1 − 𝜂
�̂�𝑡

√𝑣𝑡 + 𝜖
 [30] (7) 

 

2.6. Data Training 

In this stage, the learning process is executed on the dataset to produce a trained model, which is 
subsequently stored for the testing phase, utilizing the training dataset to fine-tune the weights and 
biases of each neuron layer. The training process incorporates several key parameters: the training 
dataset, comprising standardized features and corresponding target labels, is employed to teach the 
model to recognize patterns for accurate predictions; the model undergoes 100 epochs, meaning the 
full dataset is processed 100 times to deepen learning and minimize errors; and the data is split into 
batches of 32 samples, with each batch incrementally updating the model’s weights via 
backpropagation, a smaller batch size enhancing learning speed and reducing memory demands. 
Additionally, a validation dataset, consisting of standardized features and target labels, is used to 
monitor the model’s performance on unseen data, evaluating its generalization ability at the end of 
each epoch. 

2.7. Model Evaluation 

In this data testing, a confusion matrix is used, as shown in Fig. 1, to analyze the model's prediction 
results and determine the accuracy obtained from the system's operation. A confusion matrix is a table 
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used to evaluate the performance of a classification model, particularly in binary or multi-class 
classification. The elements within the confusion matrix are as follows: 

• Class 0 and Class 1: These represent the labels for the two classes modeled by the classification 
system. Here, Class 0 corresponds to commercial, and Class 1 corresponds to breeder.   

• True Label: The rows in the confusion matrix indicate the actual labels from the test data. 

• Predicted Label: The columns represent the labels predicted by the model for the given data. 

  

Fig. 1. Confusion Matrix 

2.8. Output 

The output obtained is the accuracy percentage of the Neural Network model that has been 
developed. This result serves as the basis for drawing conclusions from the conducted testing. 
Additionally, other evaluation metrics such as accuracy, loss, precision, recall, and F1-score are also 
considered. These metrics are used to further assess whether the model performs efficiently and 
effectively. 

3. Results and Discussion 

This section provides an explanation and discussion of the results obtained from the training and 
testing phases of applying the Neural Network classification algorithm for determining corn quality. 

3.1. Training Data Testing Results 

The training data testing was conducted using 1,417 samples (70%) of the total dataset, while 406 
samples (20%) were used as validation data. The model was trained with a learning rate of 0.001, 100 
epochs, and a batch size of 32. In Fig. 2, the best epoch for training and validation loss occurred at 
epoch 70, whereas in Figure 2 the best epoch for training and validation accuracy was observed at 
epoch 49. The training accuracy was exceptionally high, almost reaching 100%, while the validation 
accuracy remained stable at around 98%. This indicates that the model successfully learned patterns 
in the training data and was able to maintain good performance on the validation data. 

At epoch 1, the training accuracy started at 63.60% with a loss of 0.6302, while the validation 
accuracy was 94.09% with a loss of 0.3917. Despite the relatively low training accuracy at this stage, 
the validation accuracy was already high. This suggests that either the dataset was not overly complex 
or the model quickly learned the primary patterns. By epoch 10, the training accuracy increased to 
96.61%, while the validation accuracy reached 96.06%. The decreasing loss indicates that the model 
continued to improve in minimizing errors. At epoch 20, the training accuracy reached 98.63%, and 
the validation accuracy was 96.80%. After epoch 20, accuracy improvements became slower and 
started stabilizing. The training accuracy reached 99.83% at epoch 100, while the validation accuracy 
remained steady at around 98% after epoch 40. The validation loss began to stagnate and slightly 
increase after epoch 50. The training loss decreased significantly at the beginning and continued to 
approach zero by the end of training, indicating that the model effectively minimized errors in the 
training data. However, the validation loss remained higher than the training loss, but the difference 
was within a reasonable range, suggesting that no severe overfitting was present. 
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From the figures above, it can be observed that the first epoch took two seconds with 6ms per step, 
which was longer compared to subsequent epochs due to the data loading process into memory. From 
epoch 2 to epoch 100, the average time per epoch was 0 seconds, with 2ms to 6ms per step. After 
initialization, the training time per epoch became significantly faster and more consistent. The total 
time required for training and validation across 100 epochs was approximately 17 seconds. The short 
per-epoch training time demonstrates efficiency in the training process, which can be attributed to the 
relatively small model size and the use of adequate hardware resources. 

  

(a) (b) 

Fig. 2. (a) Training and Validation Loss, and (b) Training and Validation Accuracy 

3.2. Testing Data Evaluation 

The testing phase was conducted using 203 samples (10%) of the total dataset. The total time 
required for testing was 0 seconds, with an average of 3ms per step. Explanation of Fig. 3 is precision 
for class 0 is 1.00, meaning that 100% of predictions classified as class 0 were correct. Precision for 
class 1 is 0.98, meaning that 98% of all predictions classified as class 1 were correct, while the 
remaining 2% were incorrect. Recall for class 0 is 0.99, indicating that the model correctly identified 
99% of all actual class 0 samples. Recall for class 1 is 1.00, meaning that the model correctly identified 
100% of all actual class 1 samples. F1-score for class 0 is 1.00, and for class 1, it is 0.99, demonstrating 
that the model has an excellent balance between precision and recall. Support, representing the number 
of actual samples in each class, consists of 60 samples from class 1 and 143 samples from class 0 in 
this dataset. The accuracy shown in the classification performance report is 1.00, meaning that the 
model correctly predicted all test data without any errors. 

  

Fig. 3. Classification Model Performance Report 

From the explanation above, it is evident that high accuracy is directly correlated with high 
precision and recall values. Precision focuses on positive predictions. It measures how many of the 
model’s positive predictions were actually correct (true positives - TP). A higher precision indicates 
that the model makes fewer false positive errors (FP), leading to improved accuracy. Recall measures 
the model's ability to detect all actual positive samples (TP). Recall is crucial in scenarios where 
missing positive predictions (false negatives - FN) should be avoided. F1-score balances the trade-off 
between precision and recall. It is more relevant than accuracy alone, especially when the goal is to 
minimize false positives (FP) while capturing all true positives (TP) and reducing false negatives (FN). 

In this case study, where the objective is to classify corn quality, precision is more critical to 
maintain quality consistency in the eyes of consumers. Since breeder-quality corn (Grade 1) is sold at 
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a higher price, misclassifying commercial-quality corn (Grade 2) as breeder-quality could lead to 
consumer distrust, negative claims, and financial losses. 

3.3. Discussion 

In this study, "Application of Classification Algorithms in Determining Corn Quality," the model 
achieved an accuracy of 99.51% using the following hyperparameters: learning rate of 0.001, 100 
epochs, and a batch size of 32. Based on the training and testing process results, the model can be 
considered accurate, as it achieved a high accuracy score on the test data. A high accuracy on test data 
indicates that the model successfully generalizes patterns from the training data to new data without 
merely memorizing the training set. 

From the training log, the first epoch took 2 seconds per batch with 6ms per step, which was longer 
compared to subsequent epochs. After the first epoch, the training speed stabilized at 3ms per step, 
with a total time per epoch of approximately 0-1 second, resulting in a total training time of 15.365 
seconds. The testing phase was completed in 2ms, indicating that the evaluation process was highly 
efficient and fast. The total time required to test the dataset was only 0.014 seconds (14 milliseconds), 
meaning the model can make predictions at high speed. Thus, the total time required for training and 
testing the model was approximately 15.38 seconds.   

When comparing corn kernel classification studies using other methods, such as Jihad 
Ardiansyah’s research, which classified corn kernels using the discrete wavelet transform and support 
vector machine (SVM) method, an accuracy of 93.33% was achieved with a computation time of 
0.6384 second [23]. This indicates that the Neural Network model in this study outperforms both in 
accuracy and computation time. Similarly, Ula Delfana Rosiani’s research classified corn kernel 
quality using the K-Nearest Neighbor (K-NN) method, achieving an accuracy of 76.67% [24]. 
Additionally, Moch. Lutfi’s study, titled Implementation of K-Nearest Neighbor and Bagging 
Methods for Production Quality Classification, obtained the highest accuracy of 79.30% [25]. Despite 
these results, the Neural Network method still demonstrates superior performance. Furthermore, in 
Alfa Saleh’s study on the utilization of data mining techniques for determining corn quality standards, 
three methods were compared: Naïve Bayes, Decision Tree, and Support Vector Machine (SVM). The 
results showed that Support Vector Machine (SVM) achieved a success rate of 94.03%, Decision Tree 
(C4.5) had an average classification accuracy of 86.17%, Naïve Bayes had an average classification 
success rate of 82.33% [31]. While SVM produced high accuracy, when compared to the Neural 
Network model developed in this study, the Neural Network method remains superior in overall 
performance.   

It can be observed that the Neural Network model outperforms other methods. This is evident in 
Yunarto's study, which compared the Backpropagation algorithm and Support Vector Machine (SVM) 
for corn kernel classification. The results showed that the Backpropagation (Neural Network) 
algorithm achieved better recognition accuracy, with an average accuracy of 97.5%, compared to the 
SVM algorithm, which only achieved an average accuracy of 97.1%. Additionally, Backpropagation 
was significantly faster, with the shortest computation time of 0.8825 seconds, compared to the SVM 
algorithm, which had the shortest computation time of 1.6845 seconds [32]. Thus, the Neural Network 
model developed in this study outperforms other classification methods used in previous research. 
This is mainly due to the hyperparameter tuning applied to the Neural Network model, which 
significantly impacts both accuracy and computational speed. Several factors contribute to the model's 
efficiency; the number of neurons (64, 32) is not excessively large, making the computation lighter 
and more efficient. The model consists of only two hidden layers, which makes it faster compared to 
models with a higher number of layers while still being deep enough to learn complex patterns. The 
use of the ReLU activation function speeds up operations and helps prevent the vanishing gradient 
problem. The implementation of dropout (0.5) effectively prevents overfitting during training.   

The confusion matrix provides insights into the number of correct and incorrect predictions for 
each class. Based on True Positives (TP) and True Negatives (TN), the model effectively classifies 
both positive (Class 1) and negative (Class 0) samples. The number of false positives is minimal (only 
one), and there are no false negatives. This result suggests that the model rarely makes incorrect 
predictions and effectively distinguishes between the two classes. If the model were to produce a high 
number of errors in one of the classes, it would be necessary to reconsider adjustments to the model. 
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The additional evaluation metrics, precision, recall, and F1-score, indicate strong performance, 
particularly for the positive class. Precision for the positive class is 0.983, meaning that 98.3% of all 
positive predictions were correct. Recall for the positive class is 1.00, meaning that the model 
successfully detected all positive cases without missing any. F1-score is close to 1, indicating that the 
model is not only accurate but also well-balanced in identifying both classes, with no significant bias 
toward either class. 

Examining the loss graph, the early stages of training show a significant decrease in both training 
and validation loss. After approximately 20 epochs, the training loss graph stabilizes, demonstrating 
that the model continues to improve its performance on the training data. Although there is a slight 
difference between training and validation loss, there is no drastic increase in validation loss, 
indicating that the model remains stable and does not experience significant overfitting while 
maintaining good generalization capabilities. 

Dropout played a crucial role in preventing overfitting, as observed in the conducted experiments. 
With a dropout rate of 0.5, the model maintained a balance between training and validation without 
clear signs of overfitting. Compared to lower dropout rates, dropout 0.5 introduced a higher level of 
regularization, significantly reducing overfitting and improving the model’s ability to generalize to 
validation data. Overall, based on accuracy, precision, recall, F1-score, confusion matrix, and loss 
analysis, the model demonstrates high performance and accuracy in classifying data correctly. The 
choice of dropout 0.5 proves to be an effective method in reducing overfitting, providing a well-
balanced trade-off between regularization and performance, with a minimal gap between training and 
validation accuracy. 

4. Conclusion 

This study explored the application of Neural Network algorithms for classifying corn quality, 
which is a crucial aspect of the agricultural supply chain, particularly in distinguishing between 
breeder (Grade 1 quality) and commercial (Grade 2 quality) corn for livestock feed. The classification 
was conducted using a dataset of 2,026 data points, divided into 70% training data (1,417 data points), 
20% validation data (406 data points), and 10% test data (203 data points). To optimize model 
performance, hyperparameter tuning was applied with one input layer, two hidden layers, two dropout 
regularization layers, one output layer, 100 epochs, a batch size of 32, and a learning rate of 0.001. 
The evaluation metrics demonstrated the effectiveness of the Neural Network model, achieving an 
accuracy of 99.5%, recall of 100%, precision of 98.3%, and an F1-score of 99.1%. These results 
indicate that the Neural Network model provides a highly accurate classification of corn quality, 
supporting efficiency improvements in the agricultural sector by automating the quality assessment 
process. The high performance of this model suggests its potential application in industrial-scale 
operations, contributing to better quality control and decision-making in the corn supply chain. Future 
work may explore the integration of the model with IoT-based monitoring systems, validation using 
external datasets, and comparison with interpretable machine learning models for industry 
transparency. 
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